MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.

نویسندگان

  • Yun Li
  • Cristen J Willer
  • Jun Ding
  • Paul Scheet
  • Gonçalo R Abecasis
چکیده

Genome-wide association studies (GWAS) can identify common alleles that contribute to complex disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes thereof as proxies. We have previously implemented a computationally efficient Markov Chain framework for genotype imputation and haplotyping in the freely available MaCH software package. The approach describes sampled chromosomes as mosaics of each other and uses available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes, together with useful measures of the quality of these estimates. Our approach is already widely used to facilitate comparison of results across studies as well as meta-analyses of GWAS. Here, we use simulations and experimental genotypes to evaluate its accuracy and utility, considering choices of genotyping panels, reference panel configurations, and designs where genotyping is replaced with shotgun sequencing. Importantly, we show that genotype imputation not only facilitates cross study analyses but also increases power of genetic association studies. We show that genotype imputation of common variants using HapMap haplotypes as a reference is very accurate using either genome-wide SNP data or smaller amounts of data typical in fine-mapping studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we illustrate how association analyses of unobserved variants will benefit from ongoing advances such as larger HapMap reference panels and whole genome shotgun sequencing technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

A major use of the 1000 Genomes Project (1000 GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes ac...

متن کامل

An MCMC algorithm for haplotype assembly from whole-genome sequence data.

In comparison to genotypes, knowledge about haplotypes (the combination of alleles present on a single chromosome) is much more useful for whole-genome association studies and for making inferences about human evolutionary history. Haplotypes are typically inferred from population genotype data using computational methods. Whole-genome sequence data represent a promising resource for constructi...

متن کامل

Strong Association of CTLA-4 Variation (CT60A/G) and CTLA-4 Haplotypes with Predisposition of Iranians to Head and Neck Cancer

Background: Variations in Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) affect the expression and function of this protein. Objective: We aimed to investigate the association of +49 A/G (rs231775), +1822 C/T (rs231779) and +6230 A/G (CT60, rs3087243) genetic variations, as well as the merged haplotypes in CTLA-4 gene with susceptibility to, or progression of head and neck cancer. Methods: Eighty pa...

متن کامل

Genotype Imputation with Thousands of Genomes

Genotype imputation is a statistical technique that is often used to increase the power and resolution of genetic association studies. Imputation methods work by using haplotype patterns in a reference panel to predict unobserved genotypes in a study dataset, and a number of approaches have been proposed for choosing subsets of reference haplotypes that will maximize accuracy in a given study p...

متن کامل

Genotype calling and haplotyping in parent-offspring trios.

Emerging sequencing technologies allow common and rare variants to be systematically assayed across the human genome in many individuals. In order to improve variant detection and genotype calling, raw sequence data are typically examined across many individuals. Here, we describe a method for genotype calling in settings where sequence data are available for unrelated individuals and parent-of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetic epidemiology

دوره 34 8  شماره 

صفحات  -

تاریخ انتشار 2010